FACULTY OF SCIENCES - DEPARTMENT OF MATHEMATICS COURSE SYLLABUS

COURSE TITLE	ENGLISH	ARABIC	CREDITS			
	CODE/NO	CODE/NO.	Th.	Pr.	Tr.	Total
Linear Algebra	MATH 241	ر 241	3			3
Pre-requisites:	MATH 202 and MATH 203					
Course Role in Curriculum	Required or Elective:		Required			

Catalogue Description:

Systems of Linear Equations. Gauss-Jordan Elimination Method. Matrix Algebra. The Inverse of a Matrix. Determinants. Cramer's Rule. Vector Spaces and Subspaces. Euclidean Spaces. Linear Transformations. The Kernel and The Range of a Linear Transformation. Spanning Sets. Independent Sets. Bases. Dimension. Eigen values and Eigenvectors.

Textbooks:

1. David C. Lay, Linear Algebra and its Applications, Pearson Edition., 2006.

<u>Supplemental Materials:</u>

Course Learning Outcomes:

By the completion of the course the student should be able to:

- 1. Make the student acquainted with fundamental techniques in linear algebra such as: solving linear systems, matrix calculus, and determinants.
- 2. allow the student to get autonomy for finding the right method to be applied
- 3. help the student in how to use adequately a text book to get the appropriate information.

Topics to be Covered:

- 1. Systems of Linear Equations
 - a. Solving a Linear System
 - b. Row operations on the Augmented Matrix
 - c. Existence and Uniqueness questions
 - d. Row Echelon Form and Reduced Row Echelon Form
 - e. The Row Reduction Algorithm
 - f. Calculus in the setting of the Euclidean spaces
 - g. Vectors
 - h. Linear Combinations
 - i. Vector Equations. Linear Independence
 - j. The Matrix Equation Ax = b
 - k. Homogeneous and non Homogeneous systems
- 2. Matrix Algebra
 - a. Matrix Operations
 - b. The Transpose of a Matrix
 - c. The Inverse of a Matrix
 - d. Algorithm for finding the Inverse

e. Linear Transformations and Matrices in the setting of the Euclidean spaces

- 3. Determinants
 - a. Properties
 - b. The Cramer's Rule
- 4. Vector spaces
 - a. Subspaces
 - b. Spanning Sets
 - c. Linear Independence
 - d. Bases
 - e. Dimension
 - f. Linear Transformations
 - g. The Kernel and The Range of A Linear Transformation
 - h. Eigen values and Eigenvectors